8.1 Basic counting principle

EX 1: If the menu at a restaurant has the following choices:

Appetizer: soup or green salad
Main course: beef, chicken or fish
Dessert: pie or ice cream How many possible outcomes (combinations of meals) are there?

8.1 Basic counting principle

EX 1: If the menu at a restaurant has the following choices:

- Appetizer: soup or green salad
- Main course: beef, chicken or fish
- Dessert: pie or ice cream

How many possible outcomes (combinations of meals) are there?

Basic Counting Principle

> If there are m ways to do one thing, and n ways to do another, then there are $\underline{m} \times \underline{n}$ ways of doing both.

EX 2: How many outfits can be worn with 4 different shirts, 3 pants and 3 pairs of shoes.

Ex 3: How many outcomes are there when
a) Rolling 1 die
b) Rolling 2 dice
e) Flipping a coin $3 x$
c) Rolling 3 dice
f) Flipping a coin $3 x$ and rolling a dice $2 x$

Ex 4: How many possible Quebec license plates start with 3 numbers followed by 3 letters?

How about in Ontario?

How about if no repetition is allowed?
Practice:
Page 229 \# 1-9

8.2 -A- Arrangements, Permutations

A Permutation is an ordered arrangement where
ALL or SOME of the items in a set are used.
EX 1. How many ways can 8 athletes receive gold, silver and bronze medals?

Ex 2 How many 4 letter sequences can be made with the vowels $\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u} \& \mathrm{y}$ without repeating?

Ex 3: How many different ways can you arrange 6 books on the shelf?
(order matters and there is no repetition of a book)

There is a notation for writing this in short: 6! We read it 6 factorial.
On the calculator it is $n!$.
$n!=n \times(n-1) \times(n-2) \times \ldots . . \times 3 \times 2 \times 1$.
Note that $0!=1$

Evaluate these Factorials

Ex 4: If out of the 6 books, 4 are French and 2 are English.
How many ways can we arrange them if:
a) We want to keep the same languages together?

Ex 4: If out of the 6 books, 4 are French and 2 are English.
How many ways can we arrange them if:
b) We want just French together?

Ex 4: If out of the 6 books, 4 are French and 2 are English.
How many ways can we arrange them if:
c) We want just English together?

Ex 5: A die is thrown 2 times and the results are recorded.
(order matters and repetition is allowed)

Practice:
Page 230 \# 1-4

Why is $0!=1$

8.2 -B- Combinations

A Combination is an arrangement of SOME items chosen. The order does NOT matter.

Case 1: No repetition/replacement

Ex 1: Sheila has 4 shirts (pink, blue, yellow, green), she wants to choose 2 for a trip.

We can use a formula for this :

$$
n C r=C_{r}^{n}=\frac{n!}{(n-r)!r!}
$$

We read this: n choose r
Where:
n is the number of total choices available r is the \# steps/items to be chosen

Ex 2: A store has 6 employees, but only 3 need to be on duty at any time.

Ex 3: A committee of 3 people must be formed from a club of 5 members. How many different committees are possible?

Ex 4: How many 6-number combinations are there in the lottery game 6/49?

Case 2: with repetition/replacement

Again we can use a formula for this:

```
\((n+r-1)!\)
\((n-1)!r\) !
```

Ex 1: How many combinations with repetition can be made from 10 objects taking 4 at a time?

Ex 2: Two prizes are awarded in a class of 20 students. A student can win both prizes. How many different pairs of winners are possible if the order in which the prizes are awarded is not considered?

Permutation or Combination?

A) One chooses 3 different toppings on a tofu burger from a choice of 15 toppings.

Combination

Permutation

Permutation or Combination?

B) Arrange all 6 shirts in your closet. Order is important.

Combination

Permutation

Permutation or Combination?

C) Take 2 of your favourite movies from a collection of 15 dvds to a friend's for a slumber party.

Combination

Permutation

Combination

Permutation

Permutation or Combination?

D) 3 cards from a deck are dealt, order is important.

Permutation or Combination?

E) A team of 6 horses from a batch of 8 horses are chosen.

Combination

Permutation

You have 5 books on the shelf in how many ways can you...
a) Order them?

b) Read only 5 in order with possible repetition?
c) Pick only 3 in order with possible repetition?

You have 5 books on the shelf in how many ways can you...
d) Pick 3 in order without repetition?

e) Pick any 3 at a time without replacement?
f) Pick any 3 at a time with replacement?

Practice:
 Worksheet "Extra Practice"

8.3 -A- Probability of events

Recall:

- Random experiment is one that depends entirely on chance.
- Sample space Ω (omega) is the set of all possible outcomes
- An Event is a subset of the sample space.
- Simple event: contains a single outcome from the sample space.
- Compound event: contains a series of simple events.

Determine the sample space for a random experiment
a) Your favorite subject in school.
$\Omega=$
b) Flipping a coin 3 times in a row
$\Omega=$
c) For rolling a die once
$\Omega=$
An event of "rolling a \# greater than 2" : corresponds to $\{3,4,5,6$)
A simple event is "rolling a 1 " because it corresponds to $\{1\}$

The probability can be a fraction, a decimal (between 0 and 1), or a percentage. (0 being impossible, and 1 being certain)

Theoretical Prob $=\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}$

 Ex: P (randomly choosing a point in the dark sector) $=\frac{1}{4}$
Experimental Prob = \# of desired outcomes observed \# of trial runs

Ex: The experimental probability that a hockey team will win the Stanley cup is based on its performance in previous games.
$>$ The more times a random experiment is repeated, the closer the experimental probability gets to the theoretical probability y_{3}

What is the probability of picking the correct 6 numbers out of the 49 to win the Lotto 649 ? (order doesn't matter, and with no repetition)

$$
\text { Prob }=\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}
$$

8 students are auditioning for a part in the school musical.
Adam, Bob, Carl, Dan, Ed, Frank, George, and Howard. If only 6 will be chosen, what is the probability that it will be: Bob, Carl, Dan, Ed, Frank and Howard?

$$
\text { Prob }=\frac{\# \text { of desired outcomes }}{\text { total \# of outcomes }}
$$

The AND of Probability: Think MULTIPLY

When 2 independent EVENTS happen in a row, the probability of event 1 AND event 2 occurring is the multiplication of the probability of each individual event. $P(A$ and $B)=P(A, B)=P(A) \cdot P(B)$
a) Drawing a Queen \& Rolling a 6.
b) Drawing a Spade \& Rolling an even \#.

The OR of Probability: Think ADD

When two independent events happen and one event OR the other is considered a success, the probability of either occurring is the ADDITION of the probabilities of each individual event.

$$
\mathrm{P}(\mathrm{~A} \text { or } \mathrm{B})=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})
$$

Find the probability

a) Rolling a 1, 2 or 4
b) Drawing a King or Jack

Determine the probability of picking
a) a RED or a GREEN marble

Determine the probability of picking
c) 2 RED marbles

b) 2 marbles with at least 1 BLUE marble

Draw a probability tree for picking 2 marbles from a bag, in order and without replacement. The bag contains 4 RED, 3 BLUE and 2 GREEN.

Red $\frac{4}{9}<\begin{aligned} \text { Red } \frac{3}{8} & =\left(\frac{4}{9}\right)\left(\frac{3}{8}\right)=\frac{12}{72} \\ \text { Blue } \frac{3}{8} & =\frac{12}{72} \\ \text { Green } \quad \frac{2}{8} & =\frac{8}{72}\end{aligned}$

The sum of all probabilities $=1$

d) 2 of the same colour twice

Determine the probability of picking
e) 2 Blue marbles one after the other and with replacement

f) a RED and a GREEN marble with replacement

Sophie has to take two exams. She estimates that she has a $\frac{1}{3}$ chance of passing the first exam and a $\frac{3}{5}$ chance of passing the second exam.

What is the probability of her passing only one exam?
A) $\frac{4}{15}$
B) $\frac{7}{15}$
C) $\frac{8}{15}$
D) $\frac{11}{15}$

8.3 -B- Geometric Probability

In any random experiment there are two types of random variables:

Discrete Random Variable: Continuous Random Variable:

If it cannot take on all the possible values of an interval of real numbers.

Ex.: We roll two dice and observe the outcome.

We are interested in the sum of the two outcomes.

If it can take on all the possible values of an interval of real numbers.

Ex.: We randomly choose a checkout in a grocery store.

We are interested in the waiting time for the people in line.

Geometric Probability

There are 3 types of geometric probabilities, one for each of the commonly used dimensions of space; length, area and volume.

1D $\quad \mathrm{P}$ (Target $)=\frac{\text { Target length }}{\text { Total length }}$
2D $\quad \mathrm{P}$ (Target $)=\frac{\text { Target area }}{\text { Total area }}$
3D $\quad \mathrm{P}$ (Target $)=\frac{\text { Target volume }}{\text { Total volume }}$

Ex 1: What is the probability that the blind mouse will escape into a hole?

$P($ Target $)=\frac{\text { Target length }}{\text { Total length }}$

Ex 2: Which black target is a skydiver most likely to land on?

Ex 3: What is the probability the bee is in the laser cone?

Ex 4: The NUT HOUSE factory has two types of containers, a square base prism and a cylinder. Each hour they package 20 of the prism and 25 of the cylinder. Between 2 pm and 3 pm , they had some problem with their machine and lost one of their bolts in one of the containers. What is the probability that it fell in a cylinder container?

8.3 -C- Operations between events

Ex 1: Roll a fair die once.

$$
\Omega=\{1,2,3,4,5,6\}
$$

Consider:
Event A: rolling an even number

Event B: rolling a number less than 4

The 2 events can be represented by the Venn Diagram here

1) A Intersection $B: A \cap B$ is the event when A and B both occur.
2) A Union $\mathrm{B}: A \cup B$ is the event when A or B occur.
3) Complement of $A: \bar{A}$ or $A^{\prime}(r e a d A \operatorname{bar}$ or A prime, and means contrary of A): is the event when anything except A could occur.

So in Ex 1: Roll a fair die once.

$$
\Omega=\{1,2,3,4,5,6\}
$$

Event A : rolling even \#

$$
A=\{2,4,6\}
$$

Event B: rolling a \# less than 4

$$
B=\{1,2,3\}
$$

$\bar{A}=$
$\bar{B}=$
$A \cap B=$
$A \cup B=$
$A \cap \bar{B}=$
$\bar{A} \cap B=$

Practice:

page 242 \# 21-23

